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OPTIMALITY OF STATIONARY HALTIM~ POLICIES
AND FINITE TERMINATION OF SUCCESSIVE APPROXIMATIONS

1. Introduction

Consider a discrete-time-parameter S—state finite-action branching

1larkov decision chain. Attention centers here on halting (resp. ,

stopping) policies, i.e., those for which the expected population size

at time N is zero for some N (resp. , converges to zero as N

approaches infinity). The value of a policy is the expected infinite-

horizon income that it earns. The supremum of the values of the ha lting

(resp., stopping) policies is the optimal halting (resp. , stopping )

value of the decision chain. In general these values are not the same.

An optimal halting (resp., stopping) policy is one having maximuni

value in that class of policies.

Eaves and Veinott [11 have shown that if there is a stopping

policy and all rewards are finite, then there is a stationary optimal

stopping policy if and only if the optimal stopping value is finite.

Moreover, when initiated with the value of a stopping policy, they have

shown that the iterates of successive approximations converge to the

optimal stopping value; also that value is a fixed point of the optimal

return operator.

The purpose of this paper is to investigate the following addi-

tional problems under the hypothesis that the rewards are all real

(resp., real or minus infinity) valued. When does there exist c halting

stationary optimal stopping (resp., halting) policy? When do the

iterates of successive approximations converge in finitely many steps

- - assuming initiation with the value of a stationary halting policy?

1
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The motivation for studying these problems comes from a companion

paper with Veinott [2] .  There we show that the problem of finding

a minimum-concave-cost flow in a single-source network can be reduced

to finding a stationary optimal halting policy in an associated branching

Markov decision chain.

In order for there to be a halting optimal stopping (resp., halting)

policy, there must be a halting policy. Section 3 is concerned with

finding such a policy. To describe the results , let the halting t ime

of a policy from a state s be the first time at which the expected

population size is zero starting from s, if there is such a time;

otherwise, let the halting time from s be infinity. Also let the

halting time of a policy be the largest of its halting times from

each state. The main result of Section 3 is that there is a stationary

policy that simultaneously minimizes the halting time from each state,

and each of the finite halting times of that policy is S or less.

The proof of this result is a constructive combinatorial algorithm

for finding the desired policy and its halting times from each state.

One consequence of the above result is that there is a halting policy

if and only if there is a stationary halting policy. Moreover, that

is so if and only if the (stationary) policy found by the above algor-
p 

ithxn is halting, or what is the same thing, its halting time is S

or less. These results complement those of Rothbluin [ ii. , p. 711] con-

cerning the case where instead every policy is halting (he calls halting

policies nilpotent).

The main results are given in Section 1i. There we characterize

the existence of halting stationary optimal stopping (resp., halting)

2
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policies by the condition that successive approximations terminates

in finitely many steps. More precisely, suppose the rewards are rea l

(resp. , real or minus infinity) valued and successive approximations

is initiated with the value of a stationary halting policy. Then

the N-th iterate of successive approximations is a fixed point of the

optimal return operator for some N if and only if that is so for

sane N not exceeding the largest of the halting times of the stationary

halting policies; moreover, this occurs if and only if there exists

a halting stationary optimal stopping (resp., halting) policy. Further-

more, when this is so, successive approximations terminates at the

N.-th iteration with such a policy, and its value is the indicated

fixed point. Analogous results are also established where successive

approximations is replaced by a Gauss-Seidel version. The running

time of each of the above methods is proportional to the product of

the numbers of states and nonzero data elements, i.e., rewards and

transition probabilities.
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2. Preliminaries.

Following Eaves and Veinott [1 1~ Veinott [6 1, and Rothblum-Veinott

[5  1 a branching Markov decision chain will now be described. Consider

a population consisting of a finite set of individual.; each of which

is observed at a sequence of points in time labeled 1, 2 An

individual observed at a given time point is found to be in a finite

set of states labeled 1, 2, ... , S. If there is no individua l

in any state, the population is said to have stopped. Each time an

individual is observed in state s, an action a is chosen from ~

nonexnpty finite set A5 of possible actions in state s and a reward

< r(s,a) <~~° is received. The expected number of individuals in

state t at time N+l generated by each individual in state s at

time N, given that action a was chosen at time N and given the

states observed and actions taken at times 1, 2, ... , N-i is assumed

to be a real nonnegative function p(tfs,a) depending only on t, s,

and a.

Let ~ = X
S
1A5 

be the set of all decisions and let a policy be

a sequence 7r = (5,~, ~2’ ~~~~ of decisions. Using a policy ir means

that if an individual is observed in state s at time N, then

Is the action chosen at that time. Let S denote the sequence

(5, 5, ...) and call it a stationary policy.

For any S € L~, let r5 be the S-vector whose s—th component is

r(s,8
8) and let be the nonnegative S X S matrix whose st—th

element is p(tfs,5
5). The elements of P5 

will be referred to as

transition rates. Let P~ 
..• P~ where ir = 

~~l’ ~2’ ~
1 2  N

A state t is said to be accessible from state s in N steps using

— - - - _________ —- _______________
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policy ir if P~~~ > 0. A state is always ~~~~~~ e- ;ihie fr om itself in

z -ro steps. A state is called immediately accessible from another wh€ n

th~it is so in one step.

D~f’ine the S—vector v~, called the value of ir, by

k k
= Urn sup ~~ lim sup ~~ P~r5 .

k-~~ N=O N+l

Call the s—th component of v71. the yalue of ir at initial statr s.

-
~ NA policy 7r is called transient if 
~ 

P7r converges, and in this
N=O

case

v~.=~~~~~P~r5 ,

N=O N+1

since the sum converges absolutely.

Call a policy ir halting if P~ = 0 for some N> 0, and s topping

j f -, 0 as N -. ~~. Of course halting policies are stopping. A

halting ‘resp., stopping) policy 7T will be called optimal halting

(resp., stopping) if ~~~~ va for all halting (resp. , stopping) policies

a. In that event, v~. is called the optimal halting (resp. , stopping)

value of the system. The term “branching” refers to the fact that we

require the transition rates to be nonnegative only. If in addition

we assume that the sum of the transition rates :!n each row of P
5 

is

one or less for each decision 5, then we obtain an ordinary !v~ rkov

decision chain. If such is the case, then the conditional probability

that a subsystem enters the stopped state at time N+l given that it

is observed in state s at time N and action a is chosen then

S
18 1 — ~ p(tjs,a). Associated with each decision S is a (directed)

t=1

_ _ _ _ _ _ _ _ _  - ~~~~~



graph G5 whose nodes are the states 1, 2, ... , S and whose arcs

are the ordered puirs (s,t) such that 
~~st 

> 0. A graph C is

called circuitless if the nodes can be labeled 1, 2, ~.. , n so that

if (s,t) is an arc in G, then a < t. A stationary policy 5~

is halting if and only if the graph C5 is circuitless.

3. Characterization of Halting Policies.

Rothblum [14, p. 7141 refers to halting policies as “nilpotent ”

policies. Define the halting time h
7~. 

of a policy ir to be the

smallest integer N> 0 such that P~ = 0 if 7T is halting, and

set li
T 

= otherwise. Note that if policy 7T is used, then the

individuals are almost surely in the stopped state at time h
ir~ 

i.e.,

the population has stopped..

A decision S is called halting if that is so for 5. Denote

by r the set of halting decisions and let h = max h
3 

be called
SEl’

the halting time of the system where h5 = h and h = if r = 0.
S

Define h~~ , the halting time of the policy 7r from state t,

as the smallest integer N such that the t—th row of ~~ vanishes

if such an integer exists, and h~~ = otherwise. Thus h~~ is

the smallest integer N> 0 such that the population stops in N steps

or less fr om t. Note that h~~ is a “combinatorial” property of ir

in the sense that it depends on the location but not the magnitude of

the positive elements of the P5.

The halting set ~ is the set of states t such that h~~ <~~

for some T. Hence t € ~~4 if there exists a policy with finite halting

time from state t. The proof of the following result not only constructs

6
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the set ‘
~~~~ but also exhibits a decision 5 which satisfies h5t <~~

for each t in where h5t a h . Moreover, h5t is computed for
St

each t €~~ k.

Theorem 3.1. (Existence of Stationary Policies With Minimum Halting

Times)

There is a stationary policy which simultaneously minimizes the

halting times from eath state. Moreover, the halting time of that policy

is S or less from each state in ~~~~.

Proof. Let H,~ be the set of states from which there is a policy with

halting t ime k or less. Then H
0 = 0. Also H

K 
= H

~K 1L1 I~ for

k> 1 where is the set of states s not in Hk l  such that

for some action 5~, say, in A5, p(t~s,
65) = 0 for each t 

~ 
H~~1.

Since the I,~ are disjoint, there is an integer N < S such that

‘N+l = 0, and so = HN+l = 
~

•• =
‘

~~~~~~. For each s def ine

5
S in A5 arbitrarily. For each s € ~ ‘F, h5 = k where s € Lk
and. from the construction this is the minimum halting time from s. Q.E.D.

Note that the number of operations required to obtain a decision

o with minimum halting time is 0(S3z) where z is the average number

of actions in a state. Moreover , if ‘~4 ~~~~ , then the decision 5

exhibited in the proof is halting. The proof implies that if ‘~4 ~

then for each i € the i—th row of’ P~ contains a nonzero

element for each policy ir and each integer N >  1.

A matrix P is called nilpotent if = 0 for some N. The

spectrum of a matrix is defined as the set of its eigenvalues. Let

7
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L(G) be the number of nodes in a maximal chain (i.e., a directed path

with no repetition of nodes) in the graph C. The following lemma

states several known (e.g., Rothblum [14, p. 714) ,  Kato [3, pp. 22, 38])

characterizations of halting decisions.

Lemma 3.2. (Characterization of Halting Decisions)

If 5 is a decision, the following are equivalent:

(a) S is halting.

(b) P5 is nilpotent.

(c) The spectrum of P5 is (0).

(d) C5 is circuitless.

(e) h5 = L(G5) .

(f)  h5 < S .

(g) h5
< c o .

The next result is immediate from Theorem 3.1 and Lemma 3.2.

Theorem 3.3. (Existence of Halting Policies)

The following are equivalent :

(a) There exists a stationary halting policy.

(b) P5 
is nilpotent for some decision 5.

(c) The spectrum of P5 is fo) for some decision 5.

(d) C is circuitless for some decision 5.

(e) h5 = L(G 5) for some decision 5.

(f ) h5 < S for some decision 5.

(g) h < S .

_ _ _ _ _ _ _ _  - —
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(h) There exists a halting policy.

(i)  ~~~~

Remark. The computation of h is NP-complete since a s- luti3n can be

verified in polynomial time and the longest path przblem (which is

NP-complete) can be transformed to the present problem in polynomial

time. To see this, let the states be nodes and let the actions deter-

mine whether to stop or choose an arc leading to an adjacent node.

The graph of a halting decision S is circuitless and h5 is the

length of it’s longest path. Note that h5 equals the number of

nodes if and only if there is a Hamiltonian path (i.e., a path con-

tam ing all the nodes) in the graph.

9
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14. Stopping Optimality and Finite Termination of Successive Approxi-

ma ti ons.

In this section the existence of a halting stationary optimal

halting (resp., stopping) policy will be characterized by the condition

that successive approximations terminates in finitely many steps.

First, define the optimal return operator ~~ by ‘Qv = max5~~R5
v,

where R8
v = r6 + ~~~ The method of successive approximations is

the repeated application of the optimal return operator, ~~~~ being

the k-th approximation using v as the initial approximation. When

r5 >> -~ for all 5, Eaves and Veinott [ii  have shown that for every

0 k o  * *stopping vali~e v , -
~~~~ v v where v is the optimal stopping va lue ar’~

*
there is a stationary optimal stopping policy if and only if v

is finite. In our study of halting policies, the initial approxi-

mation v° will be the value of any halting decision 7 where we

require only that .~~~~ < r7 << ~~. Then v
7 

is the unique v

satisfying the recursive system v = R7v. Recall also that a halting

7 can be constructed as in the proof of Theorem 3.1, if one exists.

Lemma 14.1.

If 7 is a halting decision, then ‘~~
1
~v7 

is nondecreasing in

k > 0 and is the value of a halting policy for each k > 0. Also,

~R
kv > R~v = v

7 
for each k> h

7 
and v.

Proof.

Since 7 is halting ‘
~~~~ V

7 
> R

7
v
7 

= V
7 ~~ 

,
~~
k+l

~ >

for k > 0. Also ..A_.
kv is the value of a ha lting policy that uses

_____________ — 
- -

- 
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7 in ~~ch p~r1~~3 following period K. The final as~;ertion is irnmed~~~ o

on noting that ~~~ = 0.

U nder the assumption that r 5 >> -~~ for all 5, Ea ves and Vt~inott

[1] have characterized when a stationary optimal stopping policy ex i~~ts.

By contrast , the next result characterizes when tha t policy can also

be taken to be halting. It asserts that such a policy exists if -‘iri’i

only if the method of successive approx imations terminates in finitely

ma ny steps when initiated with the value of any halting decision.

Theorem 14.2. (Existence of Stationary Optima l Halting Policies)

If there is a halting policy, then the following are equivalent.

(a) There is a stationary optimal halting policy.

(b) ~~~
1v7 

is the optimal halting value for every i > h (resp.,

some I > 0) and every (resp., some) halting decision 7.

(c)  ~~,
iv is a fixed point of ‘

~~~~ for every I > h (resp. ,

some i > o) and every (reap. , some ) halting decision 7.

If also r 5 >> -~~~ for all 5, then the above conditions remain

equivalent on replacing “optimal halting” with “optimal stopping ” and

inserting “halting” before “stationary ” everywhere.

Proof.

(a) > (b). By hypothesis, there is a stationary optimal

halting policy 5 , say. For each halting decision 7 and i > h

it follows from Lemma 14.1 that V5 
> ‘~~~V7 

> R~v7 v
5 

so V
5 =

I

- -~e~~ T~~~~~~ ~~~~~~~~ -
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 
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(b) => ( c ) .  By Lemma 14 .1 ~nd hypothesis > ~~~v7 ~~~~~~~~

~o ~~~ (si ) =

(c)  > ( a ) .  By Lemma 14.1 ~
k 

~~~~ is nori lecreasing in k > 0,

and by hypothesis ~
k 

v
1 for K > ~~. Choose the decisions =

~~~~
‘ 
~~ 

recursively so that = R 5 v~~~ and = if

= (R5 v
1
~
’1)5 for s € S and K > 0. We now show that 5. is

k-l -

halting. If not, the graph of contains a circuit I’ on the

set of states C say. Let rn > 0 be the smallest integer such that

5
3 = = ... = for each s € C. Since 5 = 7 is halting,
m m+l 1 0

k k-l . -lm > 0. Because v > v (with v v
7

)

(i) v~~
1> (B 5 vk ) > (R5 v

kl
)5 =

k ~ k

for each s € and K > 0.

Now we show by induction on k tha t for each rn-i < K < i, at

least one of the inequalities in (i) is strict for some s ~ C

(depending on k). Since 
~ 

for some s € C, the first in-

equality in (1) is strict for that s by construction so the claim

holds for K rn— i. Suppose it holds for k— l (r t —1 < k-i < I) and

k k-i .consider k. Then v.~ > Vt for some t c C. Now by definition of

C, there is an s € C such that (s ,t) is an arc of the graph of

Thus the second inequality in (i) is strict if > for each

u in the set of states immediately accessible from s when using

Since > ~
m
, it suffices to show v~ > for each u ~~~~~~

We now show that this is the case.

Recall that v~ > -~ for some t € C. Put 5 = 5 .  Since

= and the graph G5 contains a chain (in F) from t to s

12
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having N, say, nodes , then > 0 for each u € ‘U. Also becau sc

R5V
m > ~

rn by C i),  R~O + p~~m 
= R~V

m > vm. Hence .
~~~ for each

u € ~?.L as cla imed , so the second inequality in (i) is strict.

From the above , v~~~~ > v1, which is a contradiction. Thus, 5~

is halting. Also by (1) and ~~~~ = v1, v1 
= B5 v~ and so v~ = v5

Hence as in Eaves and Veinott El], v1 > ~~v
1 for all 5, so

on iterating this inequality using the decisions in a policy ir we get

v
1 > v~j + P~v

’ for N> 1. Thus if ir is halting, v1 > v~. Hence

is a stationary optimal halting policy, establishing (a).

To complete the proof, it remains to note that if r5 >> -‘° for all

5, “optimal halting ” is replaced. by “optimal stopping ” and “halting ” is

inserted befor e “stationary ” everywhere in the above theorem and its

proof , and “ir Is halti ng” is replaced by “7r is stopping” in the preceding

paragraph , bhen the proof is valid as is. (The finiteness of the r5’s

is used only in the next to last sentence of the proof that (c)  implies ( a ) . )

Remark. One immediate consequence of the above result is that if S is

a halting stationary optima l ha lt ing (resp. , stopping ) policy, then
h

~~~
5
v
7 

is the optimal halting (resp., stopping) value for each halting

decision 7.

Algorithm. The above proof justifies the following procedure for deter-

mining whether or not a halting stationary optimal halti ng (resp. ,

stopping) policy exists, and if so, producing such a policy. First,

use the construction of Theorem 3.1 to determine whether or not a

halti ng decision exists , and if so , find one , say 7. In the latter

event construct 
~~~~~~~ ~

‘.I’ ~2’ inductively as in the proof of Theore m

14.2 until an 0 < i < S is found for which ~~~v7 
is a fixed point

13
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of R1. In that event S. is the desired halting stationary optimal

halting (resp. , stopping) policy. If no halting decision 7 exists,

or if 7 is halting but is not ~i fixed point for any

O < I < 3, then no halting stationary optimal (resp. , stopping) policy

exists.

Theorem 14.2 implies that if the r5
t s are all finite, then the

optimal halting and stopping values coincide. However, this need not

he the case when = -~ ° for some 5 and s as the following example

illustrates.

Example. The Optima l dalting and Stopping Values Need Not Coincide.

Suppose there is one state and two actions 7 and S are available

therein. If 7 is chosen at time k, the population receives a reward

of -~~~ and stops. If 5 is chosen at time K, the population receives

zero reward, remains in the state with probability 1/2, and stops with

probability 1/2. Both v7 = -~ and V
5 

= 0 are fixed points of

where ~~~v = max(i/2 v, .~x ) .  Also v5 
is the optimal stopping value

and v7 
is the optimal halting value.

1/2

1~~___~~~~~~~~~~~~~~~~~~~~ >~~
Figure l.

Recall z is the ave rage number of actions in a given state. Note

that S2z is the number of additions and approximatel y the number of

114
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comparisons required in onc application of the sptimaj. ret~~~ ope~~.. =

Thus the number of operations needed in S steps of succ~-s~ ivo approxi-

mations is O(S3z).

Incidentally not all decisions 
~o’ ~~~~~~

‘ ~2’ chosen above ar

necessarily halting even though the first and the last decisions are

halting.

Example. Halting and Nonhalting Decisions are Obtained During Inter-

mediate Steps.

Referring to Figure 2 below, consider a system with three states

labeled 1, 2, 3. There are two actions available in states 1 and 3

while state 2 has three actions. Let a, b, c denote respectively

the f irst , second, and third actions available in a state. Let the

rewards be r(l,a) = 0, r(l,b) = r(2,a) = r(2,b) = r(2,c) = r(3,a) =

r(3,b) = 1. Let the transition rates be p (lf2,c) = 1, p(2~3,b) =

p (3f2,b) = 1/2 and all others zero. Note that 5
~ 

= (a,a,a) is halt-

ing, but 
~2 

= (b,b,b) is not.

The Gauss-Seidel Method of Successive Approximations.

In general the method of successive approximations can be improved

by updating the value vk+l Immediately after it is computed. Define

(TSSv) k = (R 5v) 5 if k = s, and (T Sv) k = V
k 

otherwise. Let

T5 = T35 T15. Observe that T5v = r5 + ~5v where =

and is formed by replacing the row of the identity matrix by

the 5th 
row of P~. Define the Gauss-Seidel optimal return operator

by ~~ v = max
5~~

T5
V.

Our goal now is to establish analogs of Lemma 11.1 and Theorem 11. 2

f the Gauss-Seidel optimal return operator. An elegant way to show

this is to note that both of the above results and their proofs are

15
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b

n 0 1 2 3 14

0 1 2 2
v~ 1 1.5 2 2 2

1 1.5 1.75 2 2

(a ,a ,a) (b ,b ,b) (b,b,b) (b,e,b) (b,c,b)

Figure 2.

• valid as Is when and R5 
are replaced respectively by ~~ and T5

.

However, there is one complication in this approach. It is that dP*kv
7

is not the value of a halting policy in the sense defined here. However,

is the value of a generalized halting policy in which the action

chosen at each time depends not only on the state occupied at that time

but also on the last state visited. More precisely, let 5
~
, 

‘

be decisions with ‘~~~v = T5 ~ T5 v . Then ‘~~~ v is the va lue
1 K 7

of the generalized halting polIcy in which one uses 5
~
, ... 

‘

consecutively, each for as long as the states visited decrease strictly.

Thus if 5
~ 

is used at time n and the system is in states s and

t at times n and n -fl respectively, then one uses 5~ in period

n -f l  if s > t and in tha t period otherwise.

We can avoid the use of these generalized halting policies by

provinr ’ a variant of the natura l ana1oi~ of Lemma 14.1. First , an upturn

________________  
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in a sequence of N positive integers 
~l’ 

~~ ~• is an integer

I < a < N such that s < s where s = 0. Let g be the limit— — n l  fl 0 ,rs

as N -. ~ of the maximum number of upturns in the first N states

visited starting with s~ s and using ir among those sequences of

length N having positive probability. Let g
7 = max 5 ~~~ 

be ca lled

the upturn number of the policy IT. Also let g5 = g arid g5 = g
00 

55
Given a stationary policy 5 , we can compute g

5 
by considering

the graph G5. Clearly G
5 

is circuitless if and only if g
8 
< ,

since the existence of a circuit implies there is at least one arc

(i,j) in G5, called an upturn arc, such that I < j. If G
5 is

circuitless, then g5 
is one plus the number of upturn arcs in the

chain that has the maximum number of upturn arcs. This chain is easily

computed by any algorithm for finding a maximum cost chain when a value

of one is assigned to each upturn arc and all others are assigned value

zero. An analog of Lemma 14 .1 is now presented.

Lemma 14.3.

If 7 is a halting decision, then ~~~~~ is nondecreasing in

K >  0. Also ~~j~v < ‘~~~v < .~~~S for all k > 0 and all v such that

v <~~~v. Moreover, for each v, > T~v for all K > 0 an i

T~v = v
7 

for ail

Proof.

Since 7 is ha lting, ~~~v7 > T7v7 = v7 . Thus ‘~~~“‘v7 >

for all k > O .

Let w be such that w <~~~w and let S be a decision such tha t

= R3w. Thus Tt5w > v for ali t. Iterating this inequality,

---— ---~~~-_ _ _ _ _  

— - - - — - - - -  —~



V
5 T~ _~ ,5 

... T15w > w for s = 2, 3, ... , S. Set w w. For

s = 1, 2 , ... , S we have çftw)0 = (R5
w)
5 
< (R5

w5)
5 = (T5

w)
5 
<

where the first inequality follows from the monotonicity of R
5 

and

the second equality follows from the definition of T5
. Thus ~~ w <~~~w

for all w such that w <~~~w. Hence since v <iv, we have by in-

duction that

(1) 
_
~~k ~j~~ v <‘*‘~v

where the first inequality follows from what was shown above on letting

w = ~~~~~ and the second Inequality follows from the monotonicity of

‘
~~~~~~ together with the induction hypothesis.

From the definition of

(2) w <~~~w implies T~~w <~~~w for all s and a

Let y be such that y <~~~y and let ~ be a decision satisfying

y = T~y. Then (2) implies T~~y <~~~y. Applying T8~ sequentially

for s = 2, 3, ... , S yields

(3) ‘~~y = T~y ~ T5~ ~~ T5÷1,~~~
5y <.~

sy

where the first inequality follows by iteratively applying (2) for

j = 1, 2 , ... , s on setting w ~~~~~~ Moreover by induction

(14) ~*
kv ~~~~~~~~~~~~~ <~~~

5’
~v

where the first inequality is true from the induction hypothesis together

with the monotonicity of ~~~and the second inequality follows from (3)

on letting y =~~~~~
1
~
1)
~ . We conclude from (1) and (14) that v < k y

- -



tmp]ie:~ ~ ‘~~~v <‘cv for ~lI > fl.

From the b~1in t t i or i  f ‘~~~~~~, 
‘
~~w > T7w fo r ~ll w. i~y induc t j ~

. ,

> ~~T~~
1v > T V  where the f i rst  inequality follow s t r ~ i th~ :~~eIe-

tonicity of together with the induction hypothe:~L~ an th ’~ s een- - I

inequa lity follows from wha t was shown above on se t t ing  w = ~~~~~

Thus ~~~ 
kv > T~v for all k.

It remains to chow T~v = v7 for k > g~, . Call ‘~ ~ t~:i te tha t is

immediately accessihj — from a state when 7 is used a follower

of s. Let Cs: < k~ and L
~ ~~. Cs :  w 5 = v

75
) where w is an

S-vector. If the followers of s are in ~~~ then

(5) (T
7

w) = r7 
+ (p w) = r + ( P v )  = v

7 
.

It is sufficient to show

Jk cL  k for k = 0, 1,
T7v

since = Cl , 2 , ... , SI for k > g~ . For k = 0, (6) ~ec omu: ;

~
CLV which is trivially true. By induction, assume (6) holds for

~-l and consider k. Let w’~ ~ T17T~~’v for 1 < i < S end

w0 T~~
1v. For simplicity of notation , let L~ ~. L . .  It is suff ic ient

to show tha t

(~~) .Tk~~ 
(1, 2, . . .  , j )  ~~~~ for j  = 0, ... ,

since w~ = T~v and , when j = S, (7) become s (6) .  Now (7) is trivial

for j = C)• Suppose it holds for j—l and consider ~. Since T j 7

changes only the .j -th component of any vector ,

(8) L~~~ _ 1
CL

1
L I ( . 3)

19
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Thus if ,j is not in 
~k’ 

then by the induction hypothesis

3 k r~ t 1, ... , J ) cJ
k
ll(l

~ 
... , J—1)çL~. If j is in 

~k’ 
then

the set B~ of followers of j tha t are in H~ ~ (j+l, ,j+2, ... , 5)

m ust have upturn number at most k-l and the set E.  of followers of

j that are in Ci, 2, ... , 3—1) must have upturn number at most k.

From (6) for k-l, B
~~cJkl 1H~ cLO 11H~~~~

L
J l  

where the third

inclusion follows from the fact that the operators T~ , for 1 < p < i

do not change the components of any vector with indices in H.. From

(7) for j.-l, EJ~~~L~~1
. Thus the followers of j are in L~~1~ and

from (5) w~ = (T .
7

w~~~i .  = vyj . Hence j  € L~ and thus by (7) for

j-l and (8), (7) holds for j which completes the proof.

Remark. Lemma li.3 implies that the Gauss-Seidel method converges faster

than the usual method of successive approximations, i.e., the value of

each Gauss-Seidel iterate is always greater than that of the usual

method.

Now using the above lemma we obtain the analog of Theorem 14.2.

Theorem 14.li.

Theorem 11 .2 remains valid if is replaced by and h by g.

Proof.

The proof is identical to that of Theorem 11.2 where RJ, B7 , I~7~

and h are replaced by ‘
~~~~~~ , T7, Q

7, and g respectively and Lemma 11.3

is used instead of Lemma 14.1 with only one exception. The exception

is that the above replacements are not made in the last paragraph of

the proof that (c) implies ( a ) .  ~ .E.D.
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Remark 1. The remark and algorithm following Theorem ~4.2 also remain

valid with the obvious replacements.

Remark 2. The preceding theorem implies that if the states are labeled

such that P5 is lower triangular with zero diagonal elements for

some optima l halting (resp., stopping) policy 5 , then ~~ v7 
= V

5

for every halting decision 7 since g5 = 1. The number of oper-

ations is thus reduced by a factor of g.

In some cases it is possible to determine whether there exists a

halting optimal stopping policy without computation. The following

theorem gives sufficient conditions for the existence of a halting

stationary optimal stopping policy .

Theorem 11 .5.

Assume there exists a halting policy and -~~ << r5 < 0 for

each decision 5. If for each decision 5 and each circuit C in

G5, 
the product of the transition rates around C is one or more and

< 0 for some t € C, then there exists a halting stationary

optimal stopping policy.

Proof.

~
y hypothesis, there exists a halting policy and hence a stopping

policy. Also 0 > ~?0, so by a result of Eaves and Veinott [11,

there exists a stationary optimal stopping policy ~~ v5 < 0, and

1.v 5 = v5
. Suppose G5 

has a circuit consisting of the nodes

(1, 2, ... , ml with r51 < 0, say. Then v51 < P1 PmVSl < V51

where = p(k +lpk ,5k ) for k < m and 
~m = p(l~m,5m )• This is a

contradiction, so 5 is halting and the theorem follows.

- 
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ABSTRACT

The stopping and halting optimality of stationary halting policies

in discrete—time—parameter S-state finite-action branching Markov

decision chains are characterized by the finite termination of successive

approximations. A policy is called halting (resp., stopping) if the

expected population size at time N is zero for some N (resp., con-

verges to zero as N approaches infinity). The value of a policy

is the expected infinite—horizon income that it earns. An optimal

stopping (resp., halting) policy is one having maximum value in that

class of policies. It is shown that when the rewards are real (resp.,

real or minus infinity) valued, the N-th iterate of successive approxi-

mations (and a Gauss-Seidel improvement thereof) is a fixed point of

- 1 the optimal return operator for some N when initiated with the value

of a stationary halting policy if and only if that is so for some

N< G; moreover this occurs if and only if there exists a halting

stationary optimal stopping (resp., halting) policy. Furthermore,

~ when this is so, successive approximations (and its Gauss—Seidel

improvement) terminates at the N-th iteration with such a policy,

and its value is the indicated fixed point. A combinatorial algorithm

for finding a stationary halting policy or showing one does not exist

is given. The running time of each of the above algorithms is pro-

portional to the product of the numbers of states and nonzero transition

probabilities. The results are applied in a cxipanion paper with Veinott

• to find minimum-concave-cost flows in single-source networks .
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